第89章章光学和量子论(3 / 3)

中唯一的电子处于基态。

在此态中稍加处理可得电子到原子核中心距离平方值的平均值r0^2。

这是一个并不复杂的数学运算。

参加物竞复赛的高中生只需知道,r0^2定义为位置坐标不确定量平方(△x)^2、(△y)^2、(△z)^2之和即可。

优秀的高中物竞选手的要求是能简单运用“海森堡不确定性原理”,不必深入理解。深入理解那是大学生的业务,以后再说吧。

依葫芦画瓢,沈奇在此态中得到电子动量平方的平均值p0^2。

A^(Z-1)+离子俘获一个电子后发射一个光子,这个过程必然遵守能量守恒、动量守恒。

两个守恒关系都包含发射光子的角频率ω0,它们构成包含ω0的方程组。

由海森堡不确定性原理:

(△x)(△px)≥1/2 ?

(△y)(△py)≥1/2 ?

(△z)(△pz)≥1/2 ?

能量守恒方程可具体表示为:

1/2meve^2+1/2(M+me)v^2+E离=1/2(M+2me)μ^2+E’离+?ω0

接下来需要实施一波稍显复杂的数学操作,这个操作对沈奇来说不难:

O(∩_∩)O喵o(╥﹏╥)o……

(上面这个式子在word中显示是乱码,脑补吧,作者无能为力)

数学、物理学研究到一定程度在外人看来跟玄学没太大区别。

数学家、物理学家不需用任何文字语言表达思想,他们一言不合就抛出一堆符号,自己看吧,看懂了咱们再说话。

历经一系列的推导演算,沈奇最终得到了Z的值。

Z=4

“这……Z等于4。”沈奇略作思考,在心中默数,氢氦锂铍硼、碳氮氧氟氖……