第四十二章 困难(2 / 3)

不过,这个斐波那契素数问题……

林晓就纠结了。

这真的不是数学未解的难题吗?

可这是老师给自己的出的题啊……ъìQυGΕtV.℃ǒΜ

总不可能徐老师故意坑他吧?

或者说,他拿错题了?

要不拿手机搜一下?

但想了想,万一这道题已经被解开了,那他不就算是提前知道答案了?

对于他来说,哪怕看到一个思路,对于解题都有很大的帮助。

林晓并不知道这确实是一道未解的难题,因为他又不研究斐波那契数列,能知道这个数列的通项公式都算好的了,哪会了解这些旁枝末节呢?

而且这个问题也并不算出名,华国的中学生普遍知道的数学未解难题,基本上也就局限于哥德巴赫猜想而已,因为华国有一位陈姓数学家解决了哥德巴赫猜想中的“1+2”问题,所以就出于一种宣传的目的,将这个问题写在了数学课本上,告诉给了华国的中小学生们。

至于那些数学界更加出名的问题,譬如黎曼猜想、BSD猜想、霍奇猜想等等,就没多少中小学生知道了。

于是林晓纠结起来,不知道该怎么处理这道题。

但忽然,他脑海中灵光乍现。

这道题是写在第三张纸上的嘛!

而第一张纸的题显然比第二张纸的题简单,这么来看,这第三张纸的题肯定也比第二张纸的难。

而第二张纸上的题已经足够难了,这第三张纸上只有这么一道题,更加困难,显然就理所应当嘛。

这个逻辑很容易想通嘛!

林晓顿时就不再纠结了,同时也对徐红兵老师肃然起敬。

这种对前后各种题目难度的把控力度真是厉害!

不愧是数学教授。

于是他不再想太多,继续思考起思路。

就这样,一分钟过去,两分钟过去,十分钟过去。

他的头脑中已经掀起了无尽的风暴,神经末梢的突触间高频率地释放出递质,让他的大脑开始了极深层次的运转中。

很快,他灵光一现,如果是多项式的话……

他立马在草稿纸上开始写了起来。

首先将其通项公式写为An-(An-1)-(An-2)=0。

“然后可以利用解二阶线性齐次递回关系式的方法,那么它的特征多项式是……”